

Class: IX

Date:

INDIAN SCHOOL DARSAIT HALF YEARLY EXAMINATION, SEPTEMBER 2019 **SAMPLE PAPER MATHEMATICS**

Max.Marks: 80 Time: 3 hrs

General Instructions:

- All questions are compulsory. *(i)*
 - The question paper consists of 30 questions divided into four sections A, B, C, and D. Section A (ii) comprises of 20 questions of 1 mark each, section B comprises of 6 questions of 2 marks each, section C comprises of 8 questions of 3 marks each, section D comprises of 6 questions of 4 marks each.
 - Use of calculator is not permitted. (iii)

SECTION - A

	Multiple choice questions: (Question numbers 1 to 10)	
1.	 The product of any two irrational numbers is a) always an irrational number b) always a rational number c) always an integer 	1
2.	 d) sometimes rational, sometimes irrational Every rational number is a) a natural number b) an integer c) a real number d) a whole number 	1
3.	Degree of the zero polynomial is a) 0 b) 1 c) -1 d) not defined The value of $249^2 - 248^2$ is	1
4.	a) 1^2 b) 477 c) 497 d) 0	
5.	The linear equation $2x - 5y = 7$ has a) infinitely many solutions b) two solutions c) a unique solution d) no solution	1
6.	Any point on the y – axis is of the form a) $(x, 0)$ b) $(0, y)$ c) $(0, 0)$ d) (x, y)	1
7.	Point (-2, 6) lies in the a) I quadrant b) II quadrant c) III quadrant d) IV quadrant	1
8.	Euclid divided his famous treatise "The Elements" into	1
9	a) 13 chapters b) 12 chapters c) 11 chapters d) 9 chapters If one angle of a triangle is equal to the sum of the other two angles, then the triangle is	1
10	a) isosceles b) right angled c) equilateral d) obtuse angled Which of the following is not a criterion for congruence of triangles?	1
10.	a) SSAb) ASAc) SASd) SSSState true or false: (Question numbers 11 to 15)	1
11.	The decimal expansion of $\sqrt{5}$ is non terminating recurring.	1
12.	A zero of a polynomial is always zero.	1
13.	The perpendicular distance of the point (5, 6) from x- axis is 5.	1

14.	Lines parallel to the same line are parallel to each other.	1
15.	In a triangle sum of two angles is greater than the third angle.	1
	Very short answer :(Question numbers 16 to 20)	
16.	Find the value of $(81)^{0.16} X (81)^{0.09}$	1
17.	If $p(x) = x^2 - 2\sqrt{2} x + 1$, then find the value of $p(2\sqrt{2})$.	1
18.	State one of Euclid's axiom.	1
19.	Find the angle whose complement is equal to the angle itself.	1
20.	In triangle PQR, PQ = PR and $\angle Q = 65^{\circ}$. Find $\angle R$.	1

SECTION - B

21. If a, b, c are all non zero and a + b + c = 0, prove $\frac{a^2}{bc} + \frac{b^2}{ac} + \frac{c^2}{ab} = 3$. 2

- 22. A point lies on x- axis at a distance of 5 units from y -axis. What are its co-ordinates? What will be its co-ordinates , if it lies on y-axis at a distance of 5 units from x axis?
- 23. If the point (2k 3, k+2) lies on the graph of the equation 2x + 3y + 14 = 0, find the value of k. 2
- 24. In the given figure, QM = QN, M is the midpoint of PQ and N is the midpoint of QR. Show that PQ = QR. State which Euclid's axiom you use here.

P_M_Q N R

25. In the given figure , if l_1 is parallel to l_2 and l_3 is parallel to l_4 . What is y in terms

of x ?

26. A, B, C are the three angles of a triangle. If A $-B=15^{\circ}$, B-C= 30° , find $\angle A$, $\angle B$ and $\angle C$.

2

SECTION - C

27.	Find the values of a and b if $\frac{5+\sqrt{6}}{5-\sqrt{6}} = a + b\sqrt{6}$.	3
28.	Find the value of $\frac{3^{30}+3^{29}+3^{28}}{3^{31}+3^{30}-3^{29}}$	3
29.	Show that $(a^{x-y})^{x+y} (a^{y-z})^{y+z} (a^{z-x})^{z+x} = 1.$	3
30.	If $x + \frac{1}{x} = 3$, then find $(x^3 + \frac{1}{x^3})$	3
31.	(i) Plot the points A(3,0), B(5,0), C(5,3) and D(3,3).	3
	(ii)Name the figure obtained by joining A,B,C and D	
	(iii)Find the area of the figure.	
32.	In the figure, BO and CO are bisectors of \angle DBC and \angle ECB respectively. If	3

 \angle BAC = 70⁰ and \angle ABC =40⁰, find the measure of \angle BOC.

33. In the figure, ABCD is a quadrilateral such that AB = AD and AC is the bisector of the $\angle A$. Show that (i) $\triangle ABC \cong \triangle ADC$ (ii) BC = DC.

34.

Prove that when two lines intersect each other then vertically opposite angles formed are equal. 3

<u>SECTION – D</u>

35. Prove that
$$\frac{1}{3-\sqrt{8}} - \frac{1}{\sqrt{8}-\sqrt{7}} + \frac{1}{\sqrt{7}-\sqrt{6}} - \frac{1}{\sqrt{6}-\sqrt{5}} + \frac{1}{\sqrt{5}-2} = 5$$
 4

- 36. Find the value of p if the polynomial $p(x) = x^4 2x^3 + 3x^2 px + 3p-7$ when divided by (x + 1) leaves the remainder 19. Also find the remainder when p(x) is divided by x+2.
- 37. Draw the graphs of the following equations on the same graph sheet :

x-y = 0, x+y = 0, y+5=0. Also find the area enclosed between these lines.

38. In the given figure ABCD is a square. \triangle DEC is an equilateral triangle. Prove that

(i) \triangle BCE $\cong \triangle$ ADE (ii) BE = AE

39. In the given figure, find the value of x and y if AB is parallel to CD.

40. In the given figure, the side QR of \triangle PQR is produced to a point S. If the bisectors of \angle PQR and \angle PRS meet at point T, then prove that \angle QTR = $\frac{1}{2} \angle$ QPR.

4

4

4

4

4