

INDIAN SCHOOL DARSAIT MID TERM EXAMINATION, SEPTEMBER 2019 SAMPLE QUESTION PAPER <u>MATHEMATICS</u>

Max Marks :80 Time : 3 hrs

General Instructions:

- (*i*) All questions are compulsory.
- (ii) The question paper consists of 40 questions divided into four sections A, B, C, and D. Section A comprises of 20 questions of 1 mark each, section B comprises of 6 questions of 2 mark each, section C comprises of 8 questions of 3 mark each, section D comprises of 6 questions of 4 mark each.
- (iii) There is no overall choice. However, an internal choice has been provided in two questions of 2 marks each and two questions of 3 marks each and one question of 4 marks. You have to attempt only one of the alternatives in all such questions.
- *(iv)* Use of calculator is not permitted.

SECTION - A

Question numbers 1 to 10 carry one mark each. For each of these questions four alternative choices have been provided of which only one is correct. Select the correct choice.

1. The values of x and y in the given figure are:

(a) x = 10; v = 14

(b) x = 21; y = 84 (c) x = 21; y = 25 (d) x = 10; y = 40

- 2. The least number that is divisible by all the numbers from 1 to 10 (both inclusive) is : 1 (a) 10 (b) 100 (c) 504 (d) 2520
- 3. A polynomial of degree n has 1 (a)only 1 zero (b) exactly n zeroes (c) atmost n zeroes (d) more than n zeroes
- 4. Five years ago, A was thrice as old as B and ten years later, A shall be twice as old as 1
 B. What is the present age of A.
 (a) 20 (b) 50 (c) 60 d) 40
- 5. The roots of the equation $9x^2 bx + 81 = 0$ will be equal, if the value of b is (a) ± 9 (b) ± 18 (c) ± 27 (d) ± 54

6. Sum and product of roots of equation $x^2 - kx + k^2 = 0$ are

1

1

	(a) k, k ² (b) k ² , k (c) $-k$, k ² (d)k, $-k^2$	
7.	30^{th} term of the AP : 10, 7, 4, is	1
8.	The sum of first five multiples of 3 is:	1
9.	 (a) 45 (b) 55 (c) 65 (d) 75 ABC and BDE are two equilateral triangles such that D is the midpoint of BC. Ratio of the areas of triangles ABC and BDE is : (a) 2:1 (b) 1:2 (C) 4:1 (d)1:4 	1
10.	 In triangles ABC and DEF ∠ B = ∠ E, ∠ F = ∠ C and AB = 3DE. Then the two triangles are : (a) Congruent but not similar (b) Similar but not congruent (c) Neither congruent nor similar (d) Congruent as well as similar. Question numbers 11 to 15 carry 1 mark each. Write whether the statements are true or false.	1
11.	Product of two prime number is always equal to their LCM.	1
12.	(2x+6y=12) and $(8x+24y=65)$ are consistent pair of equations	1
13.	For $k > 0$, the quadratic equation $2x^2 + 6x - k = 0$ will definitely have real roots.	1
14.	In the AP: 10, 5, 0, -5 , the common difference d is equal to 5.	1
15.	If $\triangle DEF \sim \triangle RPQ$, then $\angle D = \angle R$ and $\angle F = \angle P$	1
	Question numbers 16 to 20 carry 1 mark each.	
16.	If two positive integers p and q can be expressed as $p = ab^2$ and $q = a^3b$; a and b being prime numbers find LCM of (n, q)	1
17.	If α and β are the zeroes of a polynomial, such that $\alpha + \beta = 6$ and $\alpha\beta = 4$, then write	1
18.	the polynomial. Find the value of m for which the pair of linear equations $2x + 3y - 7 = 0$ and $(m-1)x + (m + 1)y = (3m - 1)$ has infinitely many solutions.	1
19.	If one root of the quadratic equation $5x^2 + 13x + k = 0$ is the reciprocal of the other, then find the value of k^2	1
20.	For what value of k will the consecutive terms $2k + 1$, $3k + 3$ and $5k - 1$ form an AP?	1
21.	$\frac{\text{SECTION} - \textbf{B}}{\text{Question numbers 21 to 26 carry 2 marks each.}}$ Using Euclid's algorithm, find the HCF of 240 and 228. OR For any natural number <i>n</i> check whether 6 ^{<i>n</i>} end with digit 0.	2
22.	If 3 is a zero of the polynomial $x^4 - 3x^3 - 7x^2 + 15x + k$. find 'k'.	2
		_

- 23. Find whether the lines representing the following pair of linear equations intersect at a 2 point or parallel or coincident. 2x - 3y + 6 = 0, 4x - 5y + 2 = 0
- 24. Find the roots of the quadratic equation $\sqrt{2} x^2 + 7x + 5\sqrt{2} = 0$ 2
- 25. If 5th term of an AP is zero, show that 33rd term is four times its 12th term. OR

The n^{th} term of an AP is 6n + 11. Find the common difference.

26. In the given figure LM is parallel to AB. If AL=x-3, AC=2x, BM=x-2 and 2 BC = 2x + 3, find x.

<u>SECTION – C</u>

Question numbers 27 to 34 carry 3 marks each.

- 27. Show that only one of the numbers n, n+2 or n+4 is divisible by 3. 3
- 28. Find the zeros of the polynomial $4\sqrt{3}x^2 + 5x 2\sqrt{3}$, and verify the relationship between the zeros and co-efficients.
- 29. If α and β are the zeroes of the polynomial $2x^2 + 5x + k$ such that $\alpha^2 + \beta^2 + \alpha \beta = \frac{21}{4}$, 3 then find the value of k.

OR

What must be added to the polynomial $9x^4 - 4x^2 + 4$ so that the resulting polynomial is exactly divisible by $3x^2 + x - 1$?

Ε

С

В

30. D and E are points on the sides CA and CB respectively of a triangle ABC right angled at C. Prove that $AE^2 + BD^2 = AB^2 + DE^2$ OR In the adjoining figure, DB \perp BC, DE \perp AB and AC \perp BC. Prove that $\frac{BE}{DE} = \frac{AC}{BC}$

2

3

3

31. Solve: 99x + 101y = 499101x + 99y = 501

32. Write a quadratic equation whose roots are
$$\frac{2+\sqrt{5}}{2}$$
 and $\frac{2-\sqrt{5}}{2}$ 3

- 33. A sum of Rs.700 is to be used to give seven cash prizes to students of a school for their overall academic performance. If each prize is Rs 20 less than its preceding prize, find the value of each of the prizes.
- 34. Divide 56 in four parts in AP such that the ratio of the product of their extremes $(1^{st} 3 and 4^{th})$ to the product of middle $(2^{nd} and 3^{rd})$ is 5:6.

<u>SECTION – D</u>

Question numbers 35 to 40 carry 4 marks each.

35. Prove that $2 + \sqrt{5}$ is an irrational number.

4

3

- 36. If -1 is one of the zeroes of the cubic polynomial $15x^3 + 14x^2 3x 2$, then find the other two zeroes of the polynomial.
- 37. 4 men and 6 boys can finish a piece of work in 5 days while 3 men and 4 boys can
 4 finish it in 7 days. Find the time taken by 1 man alone or that by 1 boy along.
 OR

The present age of the father is twice the sum of the ages of his 2 children. After 20 years, his age will be equal to the sum of the ages of his children. Find the age of the father.

- 38. Speed of the boat in still water is 15km/h. It goes 30km upstream and returns back at the same point in 4 hours 30 minutes. Find the speed of the stream.
- 39. The sum of the 5th and 9th terms of an AP is 72 and the sum of the 7th and 12thterms is 4 97. Find the AP.
- 40. In $\triangle ABC$, if $\angle ADE = \angle B$, then prove that $\triangle ADE \sim \triangle ABC$. Also if AD = 7.6cm, AE = 47.2cm, BE = 4.2cm and BC = 8.4cm, then find DE.

