# INDIAN SCHOOL DARSAIT DEPARTMENT OF MATHEMATICS 

$\qquad$ Class \& Division : XI $\qquad$

## S.No.

## Questions

## Section A (Basics):

1. Distance Formula: $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}$
2. Section Formula: i) $\left(\frac{m x_{2}+n x_{1}}{m+n}, \frac{m y_{2}+n y_{1}}{m+n}, \frac{m z_{2}+n z_{1}}{m+n}\right)$ [internally]
ii) $\left(\frac{m x_{2}-n x_{1}}{m-n}, \frac{m y_{2}-n y_{1}}{m-n}, \frac{m z_{2}-n z_{1}}{m-n}\right) \quad$ [ externally]
3. 

Mid - Point Formula : $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}, \frac{z_{1}+z_{2}}{2}\right)$
4.

Centroid : $\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}, \frac{z_{1}+z_{2}+z_{3}}{3}\right)$

## Section B :

1. Show that the points $(a, b, c),(b, c, a)$ and $(c, a, b)$ are the vertices of an equilateral4 triangle.
2. Find the locus of $P$ if $P A^{2}+P B^{2}=2 k^{2}$, where $A$ and $B$ are the points $(3,4,5)$ and (-1, 3, 7 )
3. Determine the point on XY -plane which is equidistant from three points $\mathrm{A}(2,0,3)$, $B(0,3,2)$ and $C(0,0,1)$.
4. Find the co-ordinates of the point which is three fifth of the way from $(3,4,5)$ to (-2,-5,-7).
5. Centroid of a triangle with vertices $(a, 1,3),(-2, b,-5)$ and $(4,7, c)$ is origin. Find the values of $a, b$ and $c$.
6. The midpoints of the sides of a triangle are $(1,5,-1),(0,4,-2)$ and $(2,3,4)$. Find the 4 co-ordinates of the vertices of the triangle.
7. Find the ratio in which the join of $A(2,1,5)$ and $B(3,4,3)$ is divided by the plane $2 x+3 y-2 z=1$. Also find the coordinates of the point of division.

## Section C (Hots):

1. Show that the plane $a x+b y+c z+d=0$ divides the line joining the points $\left(x_{1}, y_{1}, z\right) \quad 6$ and ( $\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}$ ) in the ratio $-\frac{a x_{1}+b y_{1}+c z_{1}+d}{a x_{2}+b x_{2}+c z_{2}+d}$.
2. Find the ratio in which the sphere $x^{2}+y^{2}+z^{2}=504$ divides the line joining the points ( $12,-4,8$ ) and ( $27,-9,18$ ).
