	INDIAN SCH DEPARTMENT	OOL DARSAIT	NABET
Subjec	t : Mathematics Topic : PMI	Date of Worksheet :06/5	5/2019
Resource Person: Premela Isac Date of s		Date of submission:13/5	5/2019
Name of the Student :		Class & Division : XI Roll Numb	oer :
S.No.	Que Section A (Basics): Steps to be followed: Step 1: Consider the given statement to Step 2:Prove P(1) is true. Step 3:Assume P(k) is true. Step 4:Prove P(k+1) is true. Section B :	estions be P(n).	Marks
1.	Prove the following by PMI: 1 + 3 + 5 ++ (2n – 1) = n ²		4
2.	1.3 +2.4 +3.5 +n. (n + 2) =	1/6 n (n + 1)(2n + 7)	4
3.	a + (a + d) + (a + 2d) + +(a + (r	$(n-1)d) = \frac{n}{2}(2a + (n-1)d)$	4
4.	4 ^{<i>n</i>} + 15n – 1 is divisible by 9 for all $n \in \mathbb{N}$	٨	4
5.	Prove by induction that the sum of cube is divisible by 9.	es of any three consecutive natural numbers	6
6.	Prove using PMI the rule of exponents ($ab)^n = a^n b^n, n \in N$	4
7.	Prove that if 3 ²ⁿ is divided by 8 , the rem number.	nainder is always 1,where n is a natural	6
1.	Section C (Hots): Using principle of mathematical induction	on, prove that	6
2.	$\cos \alpha \cos 2\alpha \cos 4\alpha \dots \cos (2^{n-1}\alpha) = 0$ For all positive integer n, prove that	sin $2^n \alpha$) / ($2^n \sin \alpha$) for all $n \in N$	6
	$(n^{7}/7) + (n^{5}/5) + (2n^{3}/3) - (n/105)$ is an	n integer	