INDIAN SCHOOL DARSAIT DEPARTMENT OF MATHEMATICS

Subject : Mathematics Topic: PMI
Resource Person: Premela Isac

Date of Worksheet :06/5/2019
Date of submission:13/5/2019
\qquad Class \& Division : XI

Roll Number : \qquad

S.No.

Questions

Section A (Basics):

Steps to be followed:
Step 1: Consider the given statement to be $\mathrm{P}(\mathrm{n})$.
Step 2:Prove $P(1)$ is true.
Step 3:Assume $P(k)$ is true.
Step 4:Prove $P(k+1)$ is true.

Section B :

Prove the following by PMI:
1.
$1+3+5$ + \qquad $+(2 n-1)=n^{2}$
2.

$$
1.3+2.4+3.5+\ldots \ldots \ldots \ldots \ldots \ldots \ldots n .(n+2)=\frac{1}{6} n(n+1)(2 n+7)
$$

3.

$a+(a+d)+(a+2 d)+$ \qquad $+(a+(n-1) d)=\frac{n}{2}(2 a+(n-1) d)$
4. $4^{n}+15 n-1$ is divisible by 9 for all $n \in N$
5. Prove by induction that the sum of cubes of any three consecutive natural numbers is divisible by 9.
6. Prove using PMI the rule of exponents $(a b)^{n}=a^{n} b^{n}, n \in N$
7. Prove that if $3^{2 n}$ is divided by 8 , the remainder is always 1 , where n is a natural number.

Section C (Hots):

1. Using principle of mathematical induction, prove that
$\cos \alpha \cos 2 \alpha \cos 4 \alpha$ \qquad $\cos \left(2^{n-1} \alpha\right)=\left(\sin 2^{n} \alpha\right) /\left(2^{n} \sin \alpha\right)$ for all $n \in N$
2. For all positive integer n, prove that
$\left(n^{7} / 7\right)+\left(n^{5} / 5\right)+\left(2 n^{3} / 3\right)-(n / 105)$ is an integer
