Subject : Mathematics
Topic: Relations and Functions

Resource Person: Premela Issac

Date of Worksheet :17/5/2019

Date of submission:22/5/2019

Name of the Student : \qquad Class \& Division : XI

Roll Number : \qquad

S.No.

Questions

Section A (Basics):

i) An ordered pair consists of two objects or elements in a given fixed order
ii) The set of all ordered pairs (a, b) such that $a \in A$ and $b \in B$ is called the cartesian product of the sets A and B and is denoted by $A \times B$.
iii) $\quad A$ relation R from A to B is a subset of $A \times B$.
iv) A relation from A to B is called a function if every element of A has one and only one image.

Section B :

1. If $x, y \in\{1,2,3,4\}$ then which of the following are functions in the given set?
i) $\quad \mathrm{f}_{1}=\{(x, y): \mathrm{y}=\mathrm{x}+1\}$
iii) $\mathrm{f}_{2}=\{(x, y): x+y<4\}$
ii) $\mathrm{f}_{3}=\{(x, y): y<x\}$
iv) $\mathrm{f}_{4}=\{(x, y): x+y=5\}$
2. Let $f: A \rightarrow R, f(x)=x^{2}+1$ where $A=\{-1,0,2,4\}$. Find the range.
3. Find the domain of each of the following real valued functions
i) $\quad \mathrm{f}(\mathrm{x})=\frac{3 x-2}{x+1}$
ii) $\mathrm{f}(\mathrm{x})=\frac{2 x+1}{x^{2}-9}$
iii) $\frac{x^{2}+2 x+1}{x^{2}-8 x+12}$
iv) $\quad \mathrm{f}(\mathrm{x})=\sqrt{x-2}$
v) $\mathrm{f}(\mathrm{x})=\sqrt{9-x^{2}}$
vi) $\mathrm{f}(\mathrm{x})=\frac{x^{2}+3 x+5}{x^{2}-5 x+4}$
4. Find the domain and range of each of the following real valued functions
i) $f(x)=\frac{1}{\sqrt{x-5}}$
ii) $f(x)=\sqrt{16-x^{2}}$
iii) $f(x)=\frac{4-x}{x-4}$
iv) $\mathrm{f}(\mathrm{x})=\frac{x^{2}}{1+x^{2}}$
5. If $f(x)=x^{2}+x-1$ and $g(x)=4 x-7$, be real functions then find:
i) $(f+g) 2$
ii) $(f-g)(7)$
iii) $(\mathrm{fg})(-5)$
iv) $\left\{\frac{f}{g}\right\}$ (4)
6. If $\mathrm{f}(\mathrm{x})=[x]$ where $\mathrm{g}(\mathrm{x})=|x|$ where $[\mathrm{x}]$ is greater integer function and $|x|$ is modulus function then find (fg) $\left[\frac{7}{2}\right]-(\mathrm{gf})\left[\frac{-7}{2}\right]$
7.

If f, g, h are real functions defined by $f(x)=\sqrt{x+1}, g(x)=\frac{1}{x}$ and $h(x)=2 x^{2}-3$, then find the values of $(2 f+g-h)(1)$ and $(2 f+g-h)(0)$
8. If f is a real function defined by $\mathrm{f}(\mathrm{x})=\frac{x-1}{x+1}$, then prove that $f(2 x)=\frac{3 f(x)+1}{f(x)+3}$

Section C (Hots):

1. Find the domain of the function $f(x)$ defined by
$f(x)=(\sqrt{4-x})+\frac{1}{\sqrt{x^{2}-1}}$
2. Let A be a subset of N and $f: A \rightarrow A$ be defined by
$f(n)$: the highest prime factor of n. If range of f is A, determine A. Is A uniquely determined.

ALL THE BEST DEAR CHILDREN:

