INDIAN SCHOOL DARSAIT DEPARTMENT OF MATHEMATICS

Subject : Mathematics Topic : Revision Date of Worksheet :1/6/2019
Resource Person: Premela Issac
Date of submission:7/8/2019

Name of the Student:
Class \& Division : XI
Roll Number :

S.NO

Questions

1. If $A=\{x: x$ is a natural number $\}$
$B=\{x: x$ is an even natural number $\}$
$\mathrm{C}=\{\mathrm{x}: \mathrm{x}$ is an odd natural number $\}$
$D=\{x: x$ is a prime number $\}$

- Find i) $\mathrm{A} \cap \mathrm{B}$
ii) $C \cap D$.

2. Are the following pair of sets equal
$A=\{2,3\}, \quad B=\left\{x: x\right.$ is solution of $\left.x^{2}+5 x+6=0\right\}$
3. In a survey of 25 students it was found that 15 had taken Mathematics, 12 had
taken Physics and 11 had taken Chemistry, 15 had taken Chemistry and Mathematics, 9 had taken mathematics and physics, 4 had taken Physics and Chemistry and 3 had taken all the three subjects.
Find the number of Students who had taken:
(a) Only Chemistry
(b) Only Mathematics
(c) Only one of the Subjects.
(d)
4. Write the set $\left\{\frac{1}{3}, \frac{3}{5}, \frac{5}{7}, \frac{7}{9}, \frac{9}{11}, \frac{11}{13}\right\}$ in set builder form.
5. If $U=\{1,2,3,4,5,6,7\}, A=\{2,4,6\}$ and $B=\{3,5\}$ and $C=\{1,2,4,7\}$ determine the following sets;
i) $A^{\prime} \cup\left(B \cap C^{\prime}\right)$
ii) $(B-A) \cup(A-C)$
ii)
6. In a town of 10000 families, it was found that 40% families buy newspaper A, 20% families buy newspaper B, 10% families buy newspaper C, 5% families buy newspaper A and $B, 3 \%$ families buy newspaper B and C and 4% families buy newspaper A and C. If 2% families buy all the three newspapers. Determine the number of families which buy
i) Newspaper A only
ii) B only
iii) A and B but not C
iv) None A, B and C.
7. Draw a Venn - diagram to represent the sets $A-B$ and $B-A$.

INDIAN SCHOOL DARSAIT DEPARTMENT OF MATHEMATICS

8. Prove by the principle of Mathematical Induction that

4

$$
1.2+2.3+3.4+\ldots \ldots . .=n(n+1)=\frac{n(n+1)(n+2)}{3}
$$

9. Using Principle of Mathematical Induction prove that:
$1.3+2.4+3.5+\ldots \ldots . .=n .(n+2)=\frac{n(n+1)(2 n+7)}{6}$
10. Prove by Induction that the sum $S_{n}=n^{3}+3 n^{2}+5 n+3$ is divisible by 3 for all $n \in N$
11. By using Principle of Mathematical Induction prove the following for all $n \in N$:

$$
1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+\ldots \ldots \ldots \ldots+\frac{1}{1+2+3+4+\ldots \cos +n}=\frac{2 n}{n+1}
$$

12. By using Principle of Mathematical Induction prove the following for all $n \in N$:

$$
\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots .+\frac{1}{(3 n-2)(3 m+1)}=\frac{3}{3 n+1}
$$

13. Prove the following by the principle of mathematical induction:

$$
\frac{1}{1 \times 3}+\frac{1}{3 \times 5}+\frac{1}{5 \times 7}+\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots .+\frac{1}{(2 n-1)(2 n+1)}=\frac{n}{2 n+1} \forall n \in N .
$$

14. Prove by the principle of Mathematical Induction that $x^{2 n}-y^{2 n}$ is divisible by 4 $x+y$.
15. Evaluate $\operatorname{Sin}\left[-\frac{11 \pi}{3}\right]$
16. Find the degree measure of the angle subtended at the centre of a circle of radius 100 cm by an arc of length 22 cm . (use $\pi=22 / 7$) (Express the answer in degree and minutes).
17. If $\tan x=\frac{-5}{12}, x$ lies in the second quadrant; find $\operatorname{Sec} x$.
18. Find the values of $\cos \theta$ and $\tan \theta$, if $\sin \theta=\frac{-3}{5}$ and $\pi<\theta<\frac{3 \pi}{2}$
19. Prove that $\sin \left(-420^{\circ}\right)+\cos \left(-660^{\circ}\right) \sin \left(330^{\circ}\right)=-1$
20. If A, B, C are in A.P, then prove that $\frac{\sin A-\sin C}{\cos C-\cos A}=\cot B$
21. If $\tan x=\frac{3}{4}, \pi<x<\frac{3 \pi}{2}$, find the value of $\sin \frac{x}{2}, \cos \frac{x}{2}$ and $\tan \frac{x}{2}$
22. Prove that $\operatorname{Cos}^{2} x+\cos ^{2}\left(x+\frac{2 \pi}{3}\right)=\frac{3}{2}$

INDIAN SCHOOL DARSAIT DEPARTMENT OF MATHEMATICS

23.

Prove that i) $\tan 4 \mathrm{x}=\frac{4 \tan x\left(1-\tan ^{2} x\right)}{1-6 \tan ^{2} x+\tan ^{4} x}$
$(\cos \theta+\cos \emptyset)^{2}+(\sin \theta-\sin \emptyset)^{2}=4 \cos ^{2} \frac{\theta+\emptyset}{2}$
Find the principal solutions of the equation $2 \sin ^{2} \theta=3 \cos \theta$
Find the slope and y-intercept of the line whose equation is $2 x+4 y-7=0$.
Find the equations of the straight lines passing through the point $(3,2)$ which makes an angle 45° with the line $x-2 y=3$.

Find the value of k for which the line $(k-3) x-\left(4-k^{2}\right) y+k^{2}-7 k+6=0$ is parallel to the y-axis.

Find the distance between the parallel lines $3 x-4 y+7=0$ and $3 x-4 y+5=0$.
i) Find the value of x for which the points $(x, 1),(2,1)$ and $(4,5)$ are collinear.
ii) Find the point on the x-axis, which is equidistant from the points $, 6)$ and (3,4).

Find the equation of a line drawn perpendicular to the line $\frac{x}{4}+\frac{y}{6}=1$ through the point where it meets y -axis.

Find the distance of the point $(2,3)$ from the line $2 x-3 y+9=0$ measured along a line $x-y+1=0$.

In triangle $A B C$ with vertices $A(1,2), b(4,5)$ and $C(0,-3)$. Find the equation of 4 the perpendicular from A to $B C$.

Find the equation of the lines through the point $(3,2)$ which makes an angle of 45° with the line $x-2 y=3$.

Find the distance of the point $(2,3)$ from the line $2 x-3 y+9=0$ measured along a line $x-y+1=0$.

In triangle $A B C$ with vertices $A(1,2), B(4,5), C(0,-3)$. Find the equation of the perpendicular from A to $B C$.

If p and q are the lengths of perpendiculars from the origin to the lines $x \cos \theta-$
6 $\mathrm{y} \sin \theta=\mathrm{k} \cos 2 \theta$ and $\mathrm{x} \sec \theta+\mathrm{y} \operatorname{cosec} \theta=\mathrm{k}$ respectively, prove that $\mathrm{p}^{2}+4 \mathrm{q}^{2}=$ k^{2}.

INDIAN SCHOOL DARSAIT DEPARTMENT OF MATHEMATICS

38

Find the image of the point $(3,8)$ with respect to the line $x+3 y=7$ assuming the line to be a plane mirror.

Determine the point in $X Y$ plane which is equidistant from three points $A(2,0$, $3), b(0,3,2)$ and $C(0,0,1)$.

Find the ratio in which the line segment joining the points $(1,2,3)$ and $(-3,4,5)$ is divided by xy plane. Also find the coordinate of the point of division.

The centroid of a triangle with vertices $(-2,1,3),(-2, a,-5)$ and $(4,7, b)$ is origin. Find value of a and b.

The vertices of a triangle are $A(0,7,10), B(-1,6,6)$ and $C(-4,9,6)$. Show that $A B C$ is an isosceles right angled triangle.

Write the domain and range of signum function
Determine the domain and range
a) $f(x)=\sqrt{16-x^{2}}$
b) $f(x)=-|x|$

A relation R is defined on the set Z of integers as follows:
$(x, y) \in R$ if and only if $x^{2}+y^{2}=25$
Express R as set of ordered pairs and hence find the domain.

Let $\mathrm{A}=\left\{x_{y}, y, z\right\}$ and $\mathrm{B}=\{1,2\}$.Find the number of relations from A to B .

If $f(x)=x^{2}+x-1$ and $g(x)=4 x-7$ be real valued functions then find:
$(f+g)(2),(f-g)(7), f g(-5)$ and $f / g(4)$
Solve $5 x-3<3 x+1$ when x is a real number
1

Solve the following system of inequalities graphically:

$$
x+2 y \leq 8, x+y \geq 4, x-y \leq 0, x \geq 0, y \geq 0
$$

Solve graphically:
$3 x+2 y \leq 150, x+4 y \leq 80, x \leq 15, x \geq 0$

