INDIAN SCHOOL DARSAIT

Mathematics Worksheet Worksheet # 1 Equivalence Relation

(Chapter – 1: Relations & Functions)

CLASS WORK		
1.	Show that the relation $R = \{(1,1),(2,2),(3,3),(1,2),(2,3)\}$ defined on the set $A = \{1.2.3\}$ is reflexive but neither symmetric nor transitive.	
2.	Let A = $\{0, 1, 2, 3\}$ and R be a relation on A defined by R = $\{(0,0), (0,1), (0,3), (1,0), (1,1), (2,2), (3,0), (3,3)\}$. Is R reflexive, symmetric and transitive?	
3.	Check whether the relation defined on the set $\{1,2,3,4,5,6\}$ by R = $\{(a,b):b=a+1\}$ is reflexive, symmetric and transitive.	
4.	Let N be the set of natural numbers and R is a relation defined over N by $R = \{(x,y): x+2y=10\}$. Write the relation R and check if it is reflexive, symmetric and transitive.	
5.	Show that the relation $R = \{(a,b): a \le b, a,b \in R\}$ is reflexive and transitive but not symmetric.	
6.	Check whether the relation defined on the set of real numbers by $R = \{(a,b): a \le b^3\}$ is reflexive, symmetric and transitive.	
7.	Let the relation R be defined on the set A = $\{1, 2, 3, 4, 5\}$ by R = $\{(a, b): a^2 - b^2 < 8$. Write the relation R. Also verify whether the relation is reflexive, symmetric and transitive.	
8.	For the set $A = 1, 2, 3$ define a relation R on a by $R = \{(1,1), (2,3), (3,3), (1,3)\}$. Write the ordered pairs to be added to R to make it the smallest equivalence relation.	
9.	Let A = {1, 2, 3} then write the following relations on A i) Reflexive and transitive but not symmetric ii) Symmetric but not reflexive and transitive iii) Reflexive, symmetric and transitive	
10.	How many equivalence relations are possible on set A = {1, 2, 3}?	
11.	Show that the relation R = $\{(a,b): a-b \text{ is even}\}$ defined on the set A = $\{1,2,3,4,5\}$ is an	
	equivalence relation. Further show that the elements of {1,3,5} are related to each	
	other, the elements of $\{2,4\}$ are related to each other and no element of	
	$\{1,3,5\}$ are related to any element of $\{2,4\}$.	
12.	Show that the relation R = $\{(a,b): a-b \text{ is a multiple of } 4\}$ defined on the set	
	A = $\{x \in Z, 0 \le x \le 12\}$ is an equivalence relation. Further find all the elements related to	
	1.	
13.	Let R be a relation defined on the set $A = \{1, 2, 3, 4, 5, 6, 7\}$ by	
	$R = \{(a,b): both \ a \ and \ b \ are \ either \ even \ or \ odd\}$. Show that R is an equivalence relation.	
	Further show that i) all elements of $\{1,3,5,7\}$ are related to each other	
	ii) all elements of $\{2,4,6\}$ are related to each other.	
	iii) no element of $\{1,3,5,7\}$ is related to any element of $\{2,4,6\}$	

INDIAN SCHOOL DARSAIT

Mathematics Worksheet Worksheet # 1 Equivalence Relation

(Chapter – 1: Relations & Functions)

- 14. Show that the relation $R = \{(a,b): a-b \text{ is divisible } 3, a,b \in Z\}$ is an equivalence relation.
- Prove that the relation R on the set N×N defined by $(a,b)R(c,d) \Rightarrow a+d = b+c$, for all $(a,b),(c,d) \in N \times N$ is an equivalence relation.
- 16. Let $A = \{1,2,3,4,5,6,7\}$ and R be relation in A×A by by (a,b)R(c,d) if a + d = b + c for all (a,b), $(c,d) \in A \times A$. Prove that R is an equivalence relation. Obtain the equivalence class of (2,5).
- 17. Prove that the relation R on the set N×N defined by $(a,b)R(c,d)\Rightarrow$ ad = bc, for all $(a,b),(c,d)\in N\times N$ is an equivalence relation.
- 18. Prove that the relation R on the set N×N defined by $(a,b)R(c,d) \Rightarrow ad(b+c) = bc(a+d)$, for all $(a,b),(c,d) \in N \times N$ is an equivalence relation.
- 19. Let L be the set of lines in the XY plane and R be a relation defined on N defined by $R = \{(L_1, L_2): L_1 \parallel L_2\}$ is an equivalence relation. Find the set of all elements related to y = 2x + 4.
- Prove that the relation R on the set A of points in a plane given by $R = \{(P,Q): P \text{ and } Q \text{ are equidis} \tan t \text{ from the origin}\}$ is an equivalence relation. Further show that the set of all points related to a point $P \neq (0,0)$ is the circle passing through the point P with origin as centre.
- 21. Determine whether the relation R defined on the set of real numbers given by $R = \{(a,b): a-b+\sqrt{3} \text{ is irrational}\}$ is reflexive, symmetric and transitive.

HOME WORK

- 22. Let R = {(a, a³): where a is prime number less than 5} is a relation. Find the range of R. Also verify whether the relation is reflexive, symmetric and transitive.
- 23. Let R be a relation defined on the set N of natural numbers by $R = \{(x, y): 2x + y = 24, x, y \in N\}$. find the domain and range of the relation. Check whether R is an equivalence relation.
- Check whether the relation defined on the set of real numbers by $R = \{(a,b): a < b^2\}$ is reflexive, symmetric and transitive.
- 25. Let N be the set of natural numbers and R be a relation defined in N by $R = \{(a,b): a > b, a, b \in N\}$. Show that R is transitive but neither reflexive nor symmetric
- Show that the relation $R = \{(a,b): a=b\}$ defined on the set $A = \{x \in Z, 0 \le x \le 12\}$ is an equivalence relation. Further find all the elements related to 1.
- 27. Show that the relation $R = \{(a,b): 2 \text{ divides } a-b\}$ defined on the set Z of integers is an equivalence relation.
- 28. Let T be the triangles in a plane and R be relation in T given by $R = \{(T_1, T_2): T_1 \text{ is congruent to } T_2\}$. Show that R is an equivalence relation.
- Prove that the relation R on the set N×N defined by $(a,b)R(c,d) \Rightarrow a^2 + d^2 = b^2 + c^2$, for all $(a,b),(c,d) \in N \times N$ is an equivalence relation.

INDIAN SCHOOL DARSAIT

Mathematics Worksheet

Worksheet # 1 Equivalence Relation

(Chapter – 1: Relations & Functions)

- 30. Prove that the relation R on the set Z of all integers defined by $(x, y) \in R \Rightarrow x y$ is divisible by n is an equivalence relation.
- 31. Let Z be the set of integers. Show that the relation $R = \{(a,b): a+b \text{ is even}, a,b \in Z\}$ is an equivalence relation.
- 32. Prove that the relation R in the set $A = \{5,6,7,8,9\}$ given by $R = \{(a, b): |a b| \text{ is divisible by } 2\}$ is an equivalence relation. Obtain the equivalence class of 6.
- 33. If R_1 and R_2 are two equivalence relations, prove that $R_1 \cap R_2$ is also an equivalence relation.
- 34. In the set of natural numbers N define a relation R as follows: $\forall n, m \in N$, nRm if on division by 5 each of the numbers n and m leaves the same remainder. Show that R is an equivalence relation. Also obtain the pair-wise disjoint subsets determined by R.
- 35. If R is an equivalence relation on a set X, then show that R^{-1} is also an equivalence relation on X.

SELF STUDY

- Show that the relation R on the set A of all triangles in a plane as $R = \{(T_1, T_2): T_1 \text{ is similar to } T_2\}$ is an equivalence relation. Further consider three right triangles T_1 with sides 3,4,5, T_2 with sides 5,12,13 and T_3 with sides 6,8,10. Which triangles among T_1 , T_2 and T_3 are related?
- 37. Let S be the set of all students in a School with R as a relation in S given by $R = \{(S_1, S_2): S_1 \text{ and } S_2 \text{ are like min ded students}\}$. Show that R is an equivalence relation
 - i) Write two equivalence classes of S under the relation. (eg: set of honest students represented by [Honest Minded)

For which equivalence class you would like to be a member

- 38. Determine whether the relation R defined on the set of real numbers given by $R = \{(a,b): a,b \in R, a-b+\sqrt{2} \text{ is irrational}\}$ is reflexive, symmetric and transitive.
- 39. Let f: X \rightarrow Y defined by $f = \{(a,b): f(a) = f(b)\}$. Show that f is an equivalence relation
- 40. Let P be the set of all points in a plane and R be a relation on P defined by $R = \{(A, B) \in P \times P : \text{if the dis} \tan ce \text{ between A and B is less than 3 units}\}$. Check whether R is an equivalence relation or not.
- 41. Let Z be the set of all integers and R be a relation defined on Z by R= {(a, b): a b is divisible by 5}. Show that R is an equivalence relation.
- 42. Prove that the relation R defined on the set A = {1, 2, 3.....12} given by R= {(a, b): |a b| is divisible by 3} is an equivalence relation. Find the set of all elements related to 1.
- 43. Show that the relation R defined on the set Z of integers given by R= {(a, b): 3 divides a b} is an equivalence relation.
- 44. Consider the relation R in the set of people in colony defined by aRb if a and b are members of joint family. Is R an equivalence relation?
- 45. Let R be a relation defined on the set N of natural numbers defined by nRm if n divides m. Write whether R is reflexive, symmetric and transitive.

INDIAN SCHOOL DARSAIT

Mathematics Worksheet Worksheet # 1 Equivalence Relation (Chapter 1: Polations & Equations)

(Chapter – 1: Relations & Functions)

	46.	Show that the relation R defined on the set A of all polygons defined by $R = \{(P_1, P_2): P_1 \text{ and } P_2 \text{ have the same number of sides}\}$ is an equivalence relation. What is the set of all in A related to the right triangle T with sides 3,4 and 5?
-	47.	Show that the relation R defined on the set A of all books in a college library defined by $R = \{(x, y): x \text{ and } y \text{ have the same number of pages}\}$ is an equivalence relation.
	57	Let Z be the set of integers and Z_0 be the non-zero integers = $\{(a,b)(c,d): ad = bc\}$ be a relation on Z X Z_0 , show that R is the equivalence relation on Z X Z_0 .
	58	Verify S = $\{(a, b): a^2 + b^2 = 1\}$ is an equivalence relation on R or not.
	59	Define R = $\{(x,y): x,y \in Q, x = \frac{1}{y}\}$ check the given relation is equivalence relation or not.