

INDIAN SCHOOL DARSAIT DEPARTMENT OF PHYSICS

Subject : Physics	Topic : Chapter 1,2&3		Date of Worksheet : 18.8.19	
Resource Person: Susan Anil			Objective	type question
Name of the Student :		Class & Div : X	KII	Roll No :

1)	A thin spherical conducting shell of radius	R ha	s a charge q. another charge Q is
	R/2 from the centre of the shell is:	Stat	e potential at a point 1° at a distance
	a) $\frac{2Q}{4\pi\varepsilon_0 R} - \frac{2q}{4\pi\varepsilon_0 R}$	b)	$\frac{2Q}{4\pi\varepsilon_0 R} + \frac{q}{4\pi\varepsilon_0 R}$
	c) $\frac{2Q}{4\pi\varepsilon_0 R}$	d)	$\frac{2(q+Q)}{4\pi\varepsilon_0 R}$
2)	An electric charge $10^{-3}\mu$ C is placed at the o points A and B are situated at $(\sqrt{2}, \sqrt{2})$ and between the points A and B will be:	rigir (2,0	(0, 0) of XY coordinate system. Two) respectively. The potential difference
		1.)	237
	$\begin{array}{c} a) 0 \\ c) 4 5 \\ \end{array}$	b) d)	2 V 9V
		ч)	
3)	A sheet of Aluminium foil is introduced be	twee	en the plates of a capacitor. The
	capacitance of the capacitor:	1 \	
	a) decreases	b) d)	Remains unchanged
	c) Becomes infinite	u)	Increases
4)	Some charge is being given to a conductor.	The	n its potential
	a) Is maximum at surface	b)	Is maximum at centre
	c) Remains same throughout the	d)	Is maximum somewhere between
	conductor		surface and centre
5)	A parallel plate capacitor is charged to a po disconnecting the battery, the distance betw using an insulating handle. As a result the p	tent veen oter	ial difference of V volt. After the plates of the capacitor is increased itial difference between the plates:
	a) Increases	b)	Decreases
	c) Does not change	d)	Becomes zero
6)	In the figure two positive charges q2 and q2 force in the $+ x$ direction on a charge q1 fix is added at (x, 0),the force on q1	3 fix ced a	ed along the y axis, exert a net electric long the x axis. If a positive charge Q

	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	 a) Shall increase along the positive x- axis. b) Shall decrease along the positive x- axis.
	c) Shall point along the negative x-axis.d) Shall increase but the direction changes because of the intersection of Q with q2 and q3.
7)	Figure shows electric field lines in which an electric dipole p is placed as shown. Which of the following statements is correct? $\xrightarrow{-q \leftrightarrow p}_{+q}$
	 a) The dipole will not experience any force. b) The dipole will experience a force towards right. c) The dipole will experience a force towards left. b) The dipole will experience a force upwards.
8)	 A point charge +q, is placed at a distance d from an isolated conducting plane. The field at a point P on the other side of the plane is a) Directed perpendicular to the plane b) Directed perpendicular to the plane and away from the plane. c) Directed radially away from the point charge. d) Directed radially towards the point charge.
9)	 A hemisphere is uniformly charged positively. The electric field at a point on a diameter away from the centre is directed a) perpendicular to the diameter b) parallel to the diameter c) at an angle tilted towards the diameter d) at an angle tilted away from the diameter d) at an angle tilted away from the diameter.
10)	 If ∮E.ds = 0 over a surface, then a) the electric field inside the surface b) the electric field inside the surface is and on it is zero b) the electric field inside the surface is necessarily uniform. c) the number of flux lines entering the surface must be equal to the number of flux lines leaving it.

11)	A positive charge Q is uniformly distributed along a circular ring of radius R. A small		
	test charge q is placed at the centre of the ring. Then		
	+++++++9 $++++++++++++++++++++++++++++$		
	+ $+$ $+$ $+$ $+$ $+$		
	 (a) If q > 0 and is displaced away from the centre in the plane of the ring, it will be pushed back towards the centre. (b) If q < 0 and is displaced away from the centre in the plane of the ring, it will never return to the centre and will continue moving till it hits the ring. (c) If q < 0, it will perform SHM for small displacement along the axis. (d) q at the centre of the ring is in an unstable equilibrium within the plane of the ring for q > 0. 		
12)	Which of the following characteristics of electrons determines the current in a		
	conductor? (a) Drift velocity alone		
	(b) Thermal velocity alone.		
	(c) Both drift velocity and thermal velocity.		
	(d) Neither drift nor thermal velocity.		
13)	Kirchhoff 's junction rule is a reflection of		
	(a) Conservation of current density vector.(b) Conservation of shores		
	(c) The fact that the momentum with which a charged particle approaches a junction is unchanged (as a vector) as the charged particle leaves the junction.		
1.4)	(d) The fact that there is no accumulation of charges at a junction.		
14)	is significantly based on the following factors:		
	(a) Number of charge carriers can change with temperature T.		
	(b) Time interval between two successive collisions can depend on T.		
	 (c) Length of material can be a function of T. (d) Mass of carriers is a function of T. 		
15)	The measurement of an unknown resistance R is to be carried out using Wheatstone's bridge (see Fig. 3.25 of NCERT Book). Two students perform an experiment in two ways. The first students takes R2 = 10 Ω and R1 = 5 Ω . The other student takes R2 = 1000 Ω and R1 = 500 Ω . In the standard arm, both take R3 = 5 Ω .Both find $R = \frac{R_2}{R_1}R_3 = 10\Omega$ Within errors.		
	 (a) The errors of measurement of the two students are the same. (b) Errors of measurement do depend on the accuracy with which R2 and R1 can be measured. (c) If the student uses large values of R2 and R1, the currents through the arms will be 		
	feeble. This will make determination of null point accurately more difficult. (d) Wheatstone bridge is a very accurate instrument and has no errors of measurement.		

