

INDIAN SCHOOL DARSAIT DEPARTMENT OF PHYSICS

Subject : Physics	Topic : Chapter 4&5		Date of Worksheet : 18.8.19		
Resource Person: Susan Anil			Objective	type question	
Name of the Student :		Class & Div : X	KII	Roll No :	

1)	If in a circular coil A of radius R, current I is flowing and in another coil B of radius			
	2R a current 2I is flowing; then the ratio of the magnetic fields B_A and B_B produced by			
	then	n will be:		
	a)	1	b)	2
	c)	1/2	d)	4
2)	A lo	ng wire carries a steady current. It is be	ent ir	nto a circle of one turn and the
	mag	netic field at the centre of the coil is B.	it is	then bent into a circular loop of n
	turn	s. The magnetic field at the centre of th	e coi	il will be:
		nP	b)	$n^2\mathbf{p}$
	$\begin{pmatrix} a \end{pmatrix}$	2nB	d)	$2 n^2 B$
3)	A cł	parged particle moves through a uniform	n ma	agnetic field perpendicular to its
- /	dire	ction. Then,		-0
	a)	Momentum changes, but the K.E. is	b)	Both momentum & the K.E. are not
		constant		constant
	c)	Both momentum & K E are	(h	K E changes but the momentum is
	0)	constant	u)	constant
4)	A ui	niform electric field and a uniform mag	netic	e field are acting along the same
	dire	ction in a certain region. If an electron	is pro	ojected along the direction of the fields
	with	a certain velocity, then		
	a)	Its velocity will decrease	h)	Its velocity will increase
	u)	its verocity will decrease	0)	his verocity will increase
	c)	It will turn towards right of	d)	It will turn towards left of the
		direction of motion		direction of motion
	-			
5)	In a	region, steady and uniform electric and	l mag	gnetic field are present. These two
	The	path of the particle will be	parti	cie is released from fest in the region.
	THE	path of the particle will be		
	a)	ellipse	b)	circle
	c)	helix	d)	Straight line
6	If or	alastron and a proton having some me	mar	to optor perpendicularly to a magnetic
0)	II ar	refection and a proton naving same mo	men	ta enter perpendicularly to a magnetic

	field	, then,		
	a)	Curved path of electron & proton will be same	b)	They will move undeflected
	c)	Path of electron is more curved than proton	d)	Path of proton is more curved
7)	The	time period of a charged particle under	goir	ng a circular motion in a uniform
	mag	netic field is independent of its:	1 \	
	a)	speed	b)	mass
	c)	Charge	d)	Magnetic induction
8)	If a current is passed through a spring, then the spring will:			
	a)	expand	b)	compress
	c)	Remain same	d)	None of these
9)	Two long conductors, separated by a distance d carry currents I ₁ and I ₂ in the same direction. They exert a force F on each other. Now the current in one of them is increased to two times and its direction is reversed. The distance is also increased to 3d. The new value of force between them is :			
	a)	-2F	b)	F/3
	c)	-2F/3	d)	-F/3
10)	If an amm a)	ammeter is to be used in place of a vo neter A low resistance in parallel	ltme b)	ter, then we must connect with the A high resistance in parallel
	c)	A high resistance in series	d)	A low resistance in series
11)	A sq plan rema	uare current carrying loop is suspended e of the loop. If the force on one arm o aining three arms of the loop is	d in a f the	a uniform magnetic field acting in the loop is F, the net force on the
	a)	F	b)	-F
	c)	3F	d)	-3F
12)	A magnetic needle is kept in a non-uniform magnetic field. It experiences			
	a)	A torque but not a force	b)	Neither force nor torque
	c)	A force and a torque	d)	A force but not a torque
13)	Needles $N_1, N_2 \& N_3$ are made of a ferromagnetic, a paramagnetic and a diamagnetic			
	subs	tance respectively. A magnet, when br	ough	at close to them, will:
1	a)	Attract N ₁ strongly, but repel N ₂ & N ₃	b)	Attract all three of them

		weakly		
	c)	Attract $N_1 \& N_2$ strongly but repels N_3	d)	Attract N_1 strongly, N_2 weakly & repel N_3 weakly
14)	Curi	e temperature is the temperature above	whi	ch:
	a)	A ferromagnetic material becomes paramagnetic	b)	A paramagnetic material becomes diamagnetic
	c)	A ferromagnetic material becomes diamagnetic	d)	A paramagnetic material becomes ferromagnetic
15)	The material suitable for making electromagnets should have:			
	a)	High retentivity and high coercivity	b)	Low retentivity & low coercivity
	c)	High retentivity & low coercivity	d)	Low retentivity & high coercivity
16)	A ba	ar magnet of magnetic moment M is cu	t into	o two parts of equal lengths. The
	mag	netic moment and pole strength of eith	er pa	urt is:
	a)	M/2, m/2	b)	M, m/2
	c)	M/2,m	d)	M,m
17)	Ifa	diamagnetic material is brought near no	orth	or south pole of a bar magnet, it is
	a)	Attracted by the poles	b)	Repelled by the poles
	c)	Attracted by the north pole and repelled by the south pole	d)	Attracted by the south pole and repelled by the north pole
18)	3) According to Curie's law, the magnetic susceptibility of a substance at absolute			
	temp	perature T is proportional to		
	a)	Т	b)	T^2
	c)	1/T	d)	1/T ²
19)	The quar	magnetic moment of a revolving electron num number n as :	on a	round the nucleus varies with Principal
	a)	$\mu\infty \ n$	b)	$\mu \propto 1/n^2$
	c)	$\mu\infty \ n^2$	d)	$\mu \infty 1/n$
20)	If a	magnetic material moves from stronger	to v	veaker part of a magnetic field, it is
~ /	a)	diamagnetic	b)	paramagnetic
	c)	ferromagnetic	d)	ferrimagnetic