

INDIAN SCHOOL DARSAIT

DEPARTMENT OF CHEMISTRY

Subject: ChemistryTopic : Chemical KineticsDate of Worksheet: 5. 12.2						
Resource Person: SREEKALA M Date of Submission:						
Name of the Student: Class & Division: XII Roll Number:						
1.	Identify the order of the reaction from the following unit for its rate constant: Lmol ⁻¹ s ⁻¹	1				
2.	For the reaction $N_2(g) + 3 H_2(g) \rightarrow 2 NH_3(g)$ If $\Delta[NH_3]/\Delta t = 4x10^{-8} molL^{-1}s^{-1}$, what is the value of $-\Delta[H_2]/\Delta t$.? (Ans: $6x10^{-8}molL^{-1}s^{-1}$)					
3.	Express the relationship between the rate of production of water and the rate of disappearance of oxygen in the following reaction: $2H_2 + O_2 \rightarrow 2H_2O$					
4.	What is the difference between average rate and instantaneous rate of a chemical reaction?					
5.	What is a pseudo first order reaction? Give example.					
6.	Express clearly what you understand by 'rate expression' and 'rate constant' of a reaction.					
7.	Define: i)Order of a reaction ii)Elementary step in a reaction iii) Activation energy. iv) Elementary reaction in a process v) Rate of a reaction					
8.	Consider the decomposition of hydrogen peroxide in alkaline medium which is catalysed by iodide ions. Γ/OH^{-} $2H_2O_2 \rightarrow 2H_2O + O_2$ The reaction takes place in two steps; Step I) $H_2O_2 + \Gamma \rightarrow H_2O + IO^{-}$ (slow) Step II) $H_2O_2 + IO^{-} \rightarrow H_2O + I^{-} + O_2$ (fast) i)Write the rate law expression and determine the order of reaction w.r.t. H_2O_2 . ii)What is the molecularity of each individual step?	2				

9.	A first order reaction is 20% complete in 20 minutes. Calculate the time taken for the	2				
	reaction to go to 80% completion (Ans: 72.12min)					
10.	In a hydrolysis reaction, 5g ethyl acetate is hydrolysed in presence of dilute HCl in 300					
	min. If the reaction is of first order and the initial concentration of ethyl acetate is 22g/L,					
	calculate the rate constant of the reaction. (Ans: $8.36 \times 10^{-4} \text{min}^{-1}$)					
11.	For a chemical reaction variation in concentration,					
	Ln[R] Vs time(min) plot is shown below:					
	↑					
	▲					
	Time (min)>					
	i) What is the order of the reaction?					
	ii) What are the units of rate constant, k for the reaction?					
	iii) Give the relation between k and $t_{1/2}$					
	iv) What does the slope of the above line indicate?					
	v) Draw the plot of $\log [R]_0/[R]$ Vs time(s)					
12.	Sucrose decomposes in acid solution into glucose and fructose according to the first order	2				
	rate law with $t_{1/2}$ = 3 hrs. Calculate the fraction of sucrose which remains after 8 hrs.					
	(Ans: 0.158)					
10						
13.	The decomposition of A into product has value of k as 4.5×10^{6} s ⁻ at 10^{6} C and activation	2				
	energy is 60 kJmol. Calculate the temperature at which the value of K be $1.5 \times 10^{\circ}$ s					
	(Ans: $I = 29/K$)					
14.	The rate constant for a zero order reaction is $0.0030 \text{ mol}\text{L}^{-1}\text{s}^{-1}$. How long will it take for	2				
	the initial concentration of the reactant to fall from 0.10M to 0.075 M?					
	(Ans: t=8.33 sec)					
15.	For the reaction $2N_2O_5(g) \longrightarrow 4NO_2(g) + O_2(g)$, the rate of formation of NO ₂ (g) is	2				
	$2.8 \times 10^{-3} \text{ Ms}^{-1}$. Calculate the rate of disappearance of N ₂ O ₅ (g). (Ans: $1.4 \times 10^{-3} \text{ Ms}^{-1}$)					

16.	A reaction is first order in A and second order in B.					3	
	i)Write differential rate equation						
	ii)How is the rate aff	ected when the co	oncen	tration of A is tri	ipled?		
	iii)How is the rate affected when the concentration of both A and B are doubled?						
17.	A first order reaction has a rate constant value of 0.00510min ⁻¹ . If we begin with 0.10M concentration of the reactant, how much of the reactant will remain after 3.0 hours? (Ans: 0.0399M)					3	
18.	For a decomposition reaction, the values of rate constant k at two different temperatures are given below: $k_1 = 2.15 \times 10^{-8} \text{ Lmol}^{-1} \text{s}^{-1}$ at 650K $k_2 = 2.39 \times 10^{-7} \text{ Lmol}^{-1} \text{s}^{-1}$ at 700K.					3	
	Calculate the value of activation energy (E _a) for this reaction. (R=8.314 JK ⁻¹ mol ⁻¹) (Ans: $Ea = 182.24$ kJ mol ⁻¹ .))
19.	The following rate da	ata were obtained	l at 30	0 K for the react	ion 2A	$A + B \rightarrow C + D.$	3
	Experiment No.	[A] mol/L		[B] mol/L		Rate of formation of $D \mod L^{-1} \min^{-1}$	
	1	0.1		0.1		7.0×10^{-3}	
	$\begin{vmatrix} 2 \\ 2 \end{vmatrix}$	0.3		0.2		8.4×10^{-2}	
		0.3		0.4		3.36×10^{-2}	
	Calculate the rate of	formation of D w	hen [$A] = 0.6 \text{ mol } L^{-1}$	and [E	$[2.8 \times 10^{-1}] = 0.3 \text{ mol } \text{L}^{-1}$.	
	(Ans: $r = 3.78 \times 10^{-1} \text{mol}^{-2} \text{L}^2 \text{min}^{-1}$)						
20.	Nitrogen pentoxide d	ecomposes accor	rding	to the equation			3
	$2N_2O_5(g) \rightarrow 4NO_2(g)$	$g) + O_2(g)$					
	This first order reacting collected.	on was allowed t	to pro	ceed at 40°C and	the da	ta given below were	
	$\frac{[N_{2}O_{2}](M)}{[N_{2}O_{2}](M)}$						
	0.400	/	0.00				
	0.289		20.00				
	0.209		40.00				
	0.151		60.0	0			
	0.109		80.00				
	i)Calculate the rate constant for the reaction. Include units with your answer. ii)Calculate the initial rate of a reaction. iii) What will be the concentration of N ₂ O ₅ after 100 minutes? iv)After how many minutes will [N ₂ O ₅] be equal to 0.350M? (Ans: i)K = 1.6259x 10 ⁻² min ⁻¹ ii) 6.504x 10 ⁻³ molt ⁻¹ min ⁻¹ iii) 0.0787M iv) 8.21 min)						

21.	A first order reacti	on is 50% complete	d in 40 minutes at 300K and in 20 minutes at 320K.	3					
	Calculate the activ	vation energy of the	reaction. (Ans: Ea = 26.67 KJ/mol)						
22.	a)Illustrate graphic	cally the effect of ca	talyst on activation energy.	3					
	b)Catalysts have no effect on the equilibrium constant. Why?								
23.	Decomposition of $4PH_3$ (g) $\rightarrow P_4$ (g	phosphine(PH ₃) at $(g) + 6H_2(g)$	120 [°] C proceeds according to the equation:	3					
	It is found that this Rate = $k[PH_3]$	s reaction follows th	e following rate equation:						
	The half life of PH	I ₃ is 37.9 s at 120 ⁰ C							
	i)How much time will be required for ³ / ₄ of PH ₃ to decompose?								
	ii)What fraction of the original amount of PH ₃ will remain undecomposed after 1minute . (Ans: i) time=75.76 min ii) 33.37%)								
24.	The activation energy of first order reaction at 300K is 60kJmol ⁻¹ . In the presence of a catalyst, the activation energy gets lowered to 50kJ mol ⁻¹ at 300K. How many times the reaction rate changes in the presence of a catalyst at the same temperature?								
	(Ans: increases by 55.08times)								
25.	a)For the reaction			5					
	$C_{12}\Pi_{22}O_{11} + \Pi_2O$ Write:	$\rightarrow C_6 \Pi_{12} O_6 + C$	$_{6}n_{12}O_{6}$						
	i)Rate of reaction	expression, ii) Ra	te law equation,						
	iii)Molecularity iv)Order of reaction								
	b)The following data were obtained during the first order thermal decomposition of SO_2Cl_2 at constant volume.								
	$SO_2Cl_2(g) \rightarrow SO_2(g) + Cl_2(g)$								
	Experiment	Time (s)	Total pressure(atm)						
	1	0	0.4						
	2	100	0.7						
	Calculate the rate of reaction								
	Ans: $(k = 1.386 \times 10^{-2} \text{sec}^{-1})$								