

INDIAN SCHOOL DARSAIT **DEPARTMENT OF MATHEMATICS**

Subject : Mathematics	Topic : Polynomials	Date of Worksheet : 28-5-2019
Worksheet No:2		
Resource Person: Sunitha Rajeev		Date :

Name of the Student :_____ Class &Division : IX ... Roll Number :

	Section A (Basic Skill)	Marks
1	Simplify	
1.	Find $\frac{2}{3}$ of 72.	
2.	Find $\frac{1}{4}$ of $9\frac{1}{6}$.	
3.	Find: $\frac{4}{5} \times 3\frac{1}{7}$	
4.	Find $\frac{16}{17} \times \frac{34}{32}$	
5.	Find which is greater: $\frac{1}{5}$ of $\frac{3}{4}$ or $\frac{1}{8}$ of $\frac{7}{5}$	
	Section B	
1.	Find the remainder when $x^3 + x^2 + x + 1$ is divided by $x - \frac{1}{2}$, using remainder	2
	theorem.	
2.	If x and y are two positive real numbers such that $x^2 + 4y^2 = 17$ and	2
	xy = 2, then find the value of $(x + 2y)$.	
3.	Polynomial $3x^3 - 5x^2 + kx - 2$ and $-x^3 - x^2 + 7x + k$ leave the same remainder when divided by $(x + 2)$. Find the value of k.	3
	divided by (x + 2). This die value of k.	
4.	Factorise : $9x^2 + y^2 + z^2 - 6xy + 2yz - 6xz$. Hence find its value when $x=1,y=2$ and $z=-1$.	3
5.	Find the value of $ab + bc + ca$, if $a+b+c = 9$ and $a^2 + b^2 + c^2 = 35$.	3
6.	Find the value of 'a' for which (x-a) is a factor of the polynomial $x^6 - ax^5 + x^4 - ax^3 + 3x - a + 2$.	3
7.	Factorise completely: $x^3 - 3x^2 - 9x - 5$.	4
8.	Simplify : $(a + 2b - 3c)^2 - (a - 2b - 3c)^2 - 6b^2 - 9bc$.	4
9.	Find the value of $p^3 - q^3$, if $p - q = \frac{10}{9}$ and $pq = \frac{5}{3}$.	4

INDIAN SCHOOL DARSAIT DEPARTMENT OF MATHEMATICS

10.Evaluate using identities: (i) 103 x 107 (ii) (102)^311.If $x + \frac{1}{x} = 3$, then find $x^3 + \frac{1}{x^3}$ 12.The gehrer mick $ax^3 + 2x^2 - 2$ and $2x^3 - 5x + 6$ where divided by $(x - 4)$ beyong the	4 3 4
$\begin{bmatrix} 11 & x + y \\ x \end{bmatrix} = 5, \text{ then find } x + x^3$	
12 The network a_{3}^{2} $2u^{2}$ 2 and $2u^{3}$ $5u^{2}$ a when divided by $(u^{2}, 4)$ beyond the	4
12. The polynomial $ax^3 + 3x^2 - 3$ and $2x^3 - 5x + a$ when divided by $(x - 4)$ leaves the remainders M and N respectively. Find the value of a if $M + N = 0$.	
Section C	
1. If $\left(\frac{8}{15}\right)^3 - \left(\frac{1}{3}\right)^3 - \left(\frac{1}{5}\right)^3 = \frac{x}{75}$, find x.	3
2. Simplify: $(x - \frac{1}{x})(x + \frac{1}{x})(x^2 + \frac{1}{x^2})(x^4 + \frac{1}{x^4})$	3
3. Simplify: $\frac{27 \times 27 \times 27 - 7 \times 7 \times 7}{27 \times 27 + 27 \times 7 + 7 \times 7}$	4
4. Factorise completely $x^8 - y^8$	4
5. If $a - b = 7$ and $a^2 + b^2 = 85$, find $a^3 - b^3$.	4