

INDIAN SCHOOL DARSAIT DEPARTMENT OF PHYSICS

Subject : Physics		Chapter : Motion in a Plane		Worksheet No. 3	
Name	e of the Student :		Class & Division : XI A/B	Roll Number :	
1	The magnitude of the reaction the angle between \vec{P} and		ors \vec{P} and \vec{Q} is given by $R^2 = P^2$	$+ Q^2$. What is	1
2	Prove that the vectors ($(\hat{i} + 2\hat{j} + 3\hat{k})$ and (2)	$(\hat{i} - \hat{j})$ are perpendicular to each	n other.	1
3	Find the angle between $\vec{A} = \hat{\imath} + \hat{\jmath} - 2\hat{k}$ and $\vec{B} = \hat{\imath} + 2\hat{\jmath} - \hat{k}$.				1
4	If a bat flies from xyz coordinates (-2m, 4m, -3m) to coordinates (6m, -2m, -3m), what is its displacement in unit-vector notation?				1
5	A cricketer can throw a ball to a maximum horizontal distance of 100 m. How much high above the ground can the cricketer throw the same ball?				1
6	Find the angle of projection at which the horizontal range and maximum height of a projectile are equal.				1
7	A boat man can row with a speed of 10 km/h in still water. If the river flows steadily at 5km/h, in which direction should the boatman row in order to reach a point on the other bank directly opposite to the point from where he started? The width of the river is 2km.				2
8	A unit vector is represented by $a\hat{i} + b\hat{j} + c\hat{k}$. If the values a and b are 0.6 and 0.8 respectively, find the value of c.				2
9	The ceiling of a long hall is 25 m high. What is the maximum horizontal distance that a bal thrown with a speed of 40 m/s can go without hitting the ceiling of the hall?			ance that a ball	2
10	A cricket ball is thrown at a speed of 28 m/s in a direction 30° above the horizontal. Calculate -				2
		by the ball to reach nce from the throw	ne ball back the same level er to point where it returns to t	he same level.	
11	Calculate the area of the $\hat{i} + 2\hat{j} + 3\hat{k}$ and $\vec{B} = 2\hat{i}$		se adjacent sides are given by th	ne vectors, $\vec{A} =$	2
	(hint : area of parallelog	$\operatorname{ram} = \left \vec{A} \times \vec{B} \right $			

- 12 If a shower of rain appears to be falling vertically downwards with a speed of 12 km/h 3 to a person walking due east with speed 5km/h, what is the actual direction of rain?
- A cyclist is riding with a speed of 27 km/h. As he approaches a circular turn on the road of radius 80 m, he applies brakes and reduces his speed at constant rate of 0.5 m/s², every second. What is magnitude and direction of the acceleration of the cyclist on the circular track?
- 14 A man can swim with a speed of 4km/h in still water. How long does he take to cross a 3 river 1 km wide if the river flows steadily at 3km/h and he makes his strokes normal to the river current? How far down the river does he go when he reaches the other bank?
- 15 A body is projected with a velocity of 40 m/s. After 2 s, it crosses a vertical pole of height 3 20.4 m. Calculate the angle of projection and the horizontal range.
- 16 The greatest and the least resultant of two forces acting at a point is 10 N and 6 N 3 respectively. If each force is increased by 3 N, find the resultant of the new forces when acting at a point at an angle 90° with each other.
- 17 Determine a unit vector which is perpendicular to both the vectors $2\hat{i} + \hat{j} + \hat{k}$ and $\hat{i} 3$ $\hat{j} + 2\hat{k}$.
- 18 Given $\vec{A} = \hat{\imath} 2\hat{\jmath} 3\hat{k}$ and $\vec{B} = 4\hat{\imath} 2\hat{\jmath} + 6\hat{k}$. Calculate the angle made by $(\vec{A} + \vec{B})$ 3 with the x-axis?
- 19 A stone tied to the end of a string 80 cm long is whirled in a horizontal circle with a 3 constant speed. If the stone makes 14 revolutions in 25 s, what is the magnitude and direction of acceleration of the stone?
- 20 A fighter plane flying horizontally at an altitude of 1.5 km with speed 720 km/h passes 3 directly overhead an anti-aircraft gun. At what angle from the vertical should the gun be fired for the shell with a muzzle speed of 600 m/s to hit the plane? At what minimum altitude should the pilot fly to avoid being hit? (take $g = 10m/s^2$)