Class XII
 Mathematics Worksheet
 Worksheet \# 1 Equivalence Relation
 (Chapter-1: Relations \& Functions)

INDIAN SCHOOL DARSAIT

CLASS WORK

1. \quad Show that the relation $R=\{(1,1),(2,2),(3,3),(1,2),(2,3)\}$ defined on the set $A=\{1.2 .3\}$ is reflexive but neither symmetric nor transitive.
2. Let $A=\{0,1,2,3\}$ and R be a relation on A defined by $R=\{(0,0),(0,1),(0,3),(1,0)$, $(1,1),(2,2),(3,0),(3,3)\}$. Is R reflexive, symmetric and transitive?
3. Check whether the relation defined on the set $\{1,2,3,4,5,6\}$ by $\mathrm{R}=\{(a, b): b=a+1\}$ is reflexive, symmetric and transitive.
4. Let N be the set of natural numbers and R is a relation defined over N by $\mathrm{R}=\{(x, y): x+2 y=10\}$. Write the relation R and check if it is reflexive, symmetric and transitive.
5. Show that the relation $\mathrm{R}=\{(a, b): a \leq b, a, b \in R\}$ is reflexive and transitive but not symmetric.
6. Check whether the relation defined on the set of real numbers by $\mathrm{R}=\left\{(a, b): a \leq b^{3}\right\}$ is reflexive, symmetric and transitive.
7. Let the relation R be defined on the set $\mathrm{A}=\{1,2,3,4,5\}$ by
$R=\left\{(a, b):\left|a^{2}-b^{2}\right|<8\right.$. Write the relation R. Also verify whether the relation is reflexive, symmetric and transitive.
8. \quad For the $\operatorname{set} \mathrm{A}=1,2,3\}$ define a relation R on a by $\mathrm{R}=\{(1,1),(2,3),(3,3),(1,3)\}$. Write the ordered pairs to be added to R to make it the smallest equivalence relation.
9. Let $\mathrm{A}=\{1,2,3\}$ then write the following relations on A
i) Reflexive and transitive but not symmetric
ii) Symmetric but not reflexive and transitive
iii) Reflexive, symmetric and transitive
10. How many equivalence relations are possible on set $\mathrm{A}=\{1,2,3\}$?
11. Show that the relation $\mathrm{R}=\{(a, b):|a-b|$ iseven $\}$ defined on the set $\mathrm{A}=\{1,2,3,4,5\}$ is an equivalence relation. Further show that the elements of $\{1,3,5\}$ are related to each other, the elements of $\{2,4\}$ are related to each other and no element of $\{1,3,5\}$ are related to any element of $\{2,4\}$.
12. Show that the relation $\mathrm{R}=\{(a, b):|a-b|$ is a multiple of 4$\}$ defined on the set

A $=\{x \in Z, 0 \leq x \leq 12\}$ is an equivalence relation. Further find all the elements related to 1.
13. Let R be a relation defined on the set $\mathrm{A}=\{1,2,3,4,5,6,7\}$ by
$\mathrm{R}=\{(a, b)$:both a and bare either evenorodd $\}$. Show that R is an equivalence relation. Further show that i) all elements of $\{1,3,5,7\}$ are related to each other
ii) all elements of $\{2,4,6\}$ are related to each other.
iii) no element of $\{1,3,5,7\}$ is related to any element of $\{2,4,6\}$

	INDIAN SCHOOL DARSAIT
Class XIIMathematics Worksheet (Chapter - 1: Relations \& Functions)	

14.	Show that the relation $R=\{(a, b): a-b$ is divisible $3, a, b \in Z\}$ is an equivalence relation.	
15.	Prove that the relation R on the set $\mathrm{N} \times \mathrm{N}$ defined by $(a, b) R(c, d) \Rightarrow \mathrm{a}+\mathrm{d}=\mathrm{b}+\mathrm{c}$, for all $(a, b),(c, d) \in \mathrm{N} \times \mathrm{N}$ is an equivalence relation.	
16.	Let $\mathrm{A}=\{1,2,3,4,5,6,7\}$ and R be relation in $\mathrm{A} \times \mathrm{A}$ by by $(a, b) R(c, d)$ if a $+\mathrm{d}=\mathrm{b}+\mathrm{c}$ for all $(\mathrm{a}, \mathrm{b}),(\mathrm{c}, \mathrm{d}) \in \mathrm{A} \times \mathrm{A}$. Prove that R is an equivalence relation. Obtain the equivalence class of $(2,5)$.	
17.	Prove that the relation R on the set $\mathrm{N} \times \mathrm{N}$ defined by $(a, b) R(c, d) \Rightarrow \mathrm{ad}=\mathrm{bc}$, for all $(a, b),(c, d) \in \mathrm{N} \times \mathrm{N}$ is an equivalence relation.	
18.	Prove that the relation R on the set $\mathrm{N} \times \mathrm{N}$ defined by $(a, b) R(c, d) \Rightarrow \mathrm{ad}(\mathrm{b}+\mathrm{c})=\mathrm{bc}(\mathrm{a}+\mathrm{d})$, for all $(a, b),(c, d) \in \mathrm{N} \times \mathrm{N}$ is an equivalence relation.	
19.	Let L be the set of lines in the XY plane and R be a relation defined on N defined by $R=\left\{\left(L_{1}, L_{2}\right): L_{1} \\| L_{2}\right\}$ is an equivalence relation. Find the set of all elements related to $\mathrm{y}=$ $2 \mathrm{x}+4$.	
20.	Prove that the relation R on the set A of points in a plane given by $R=\{(P, Q): P$ and Q areequidistan t fromtheorigin $\}$ is an equivalence relation. Further show that the set of all points related to a point $\mathrm{P} \neq(0,0)$ is the circle passing through the point P with origin as centre.	
21.	Determine whether the relation R defined on the set of real numbers given by $R=\{(a, b): a-b+\sqrt{3}$ is irrational $\}$ is reflexive, symmetric and transitive.	

HOME WORK

22. Let $R=\left\{\left(a, a^{3}\right)\right.$: where a is prime number less than 5$\}$ is a relation. Find the range of R. Also verify whether the relation is reflexive, symmetric and transitive.
23. Let R be a relation defined on the set N of natural numbers by $R=\{(x, y): 2 x+y=24$, $x, y \in N\}$. find the domain and range of the relation. Check whether R is an equivalence relation.
24. Check whether the relation defined on the set of real numbers by $\mathrm{R}=\left\{(a, b): a<b^{2}\right\}$ is reflexive, symmetric and transitive.
25. Let N be the set of natural numbers and R be a relation defined in N by $R=\{(a, b): a>b, a, b \in N\}$. Show that R is transitive but neither reflexive nor symmetric
26. Show that the relation $\mathrm{R}=\{(a, b): a=b\}$ defined on the set $\mathrm{A}=\{x \in Z, 0 \leq x \leq 12\}$ is an equivalence relation. Further find all the elements related to 1 .
27. Show that the relation $\mathrm{R}=\{(a, b): 2$ divides $a-b\}$ defined on the set Z of integers is an equivalence relation.
28. Let T be the triangles in a plane and R be relation in T given by $\mathrm{R}=\left\{\left(T_{1}, T_{2}\right): T_{1}\right.$ is congruentto $\left.T_{2}\right\}$. Show that R is an equivalence relation.
29. Prove that the relation R on the set $\mathrm{N} \times \mathrm{N}$ defined by $(a, b) R(c, d) \Rightarrow a^{2}+d^{2}=b^{2}+c^{2}$, for all $(a, b),(c, d) \in \mathrm{N} \times \mathrm{N}$ is an equivalence relation.

Class XII
 \section*{INDIAN SCHOOL DARSAIT}
 Mathematics Worksheet
 Worksheet \# 1 Equivalence Relation
 (Chapter-1: Relations \& Functions)

30.	Prove that the relation R on the set Z of all integers defined by $(x, y) \in R \Rightarrow \mathrm{x}-\mathrm{y}$ is divisible by n is an equivalence relation.	
31.	Let Z be the set of integers. Show that the relation $R=\{(a, b): a+b$ is even, $a, b \in Z\}$ is an equivalence relation.	
32.	Prove that the relation R in the set $A=\{5,6,7,8,9\}$ given by $R=\{(a, b)$: $\|a-b\|$ is divisible by 2$\}$ is an equivalence relation. Obtain the equivalence class of 6 .	
33.	If R_{1} and R_{2} are two equivalence relations, prove that $R_{1} \cap R_{2}$ is also an equivalence relation.	
34.	In the set of natural numbers N define a relation R as follows: $\forall \mathrm{n}, \mathrm{m} \in \mathrm{N}, \mathrm{nRm}$ if on division by 5 each of the numbers n and m leaves the same remainder. Show that R is an equivalence relation. Also obtain the pair-wise disjoint subsets determined by R .	
35.	If R is an equivalence relation on a set X, then show that R^{-1} is also an equivalence relation on X .	
	SELF STUDY	
36.	Show that the relation R on the set A of all triangles in a plane as $R=\left\{\left(T_{1}, T_{2}\right): T_{1}\right.$ is similar to $\left.T_{2}\right\}$ is an equivalence relation. Further consider three right triangles T_{1} with sides $3,4,5, \mathrm{~T}_{2}$ with sides $5,12,13$ and T_{3} with sides $6,8,10$. Which triangles among $\mathrm{T}_{1}, \mathrm{~T}_{2}$ and T_{3} are related?	
3	Let S be the set of all students in a School with R as a relation in S given by $R=\left\{\left(S_{1}, S_{2}\right): S_{1}\right.$ and S_{2} are like min ded students $\}$. Show that R is an equivalence relation i) Write two equivalence classes of S under the relation. (eg: set of honest students represented by [Honest Minded) For which equivalence class you would like to be a member	
38.	Determine whether the relation R defined on the set of real numbers given by $R=\{(a, b): a, b \in R, a-b+\sqrt{2}$ isirrational $\}$ is reflexive, symmetric and transitive.	
39.	Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ defined by $f=\{(a, b): f(a)=f(b)\}$. Show that f is an equivalence relation	
40.	Let P be the set of all points in a plane and R be a relation on P defined by $R=\{(A, B) \in P \times P:$ if the dis \tan ce between A and \mathbf{B} isless than 3 units $\}$. Check whether R is an equivalence relation or not.	
41.	Let Z be the set of all integers and R be a relation defined on Z by $R=\{(a, b)$: $a-b$ is divisible by 5$\}$. Show that R is an equivalence relation.	
42.	Prove that the relation R defined on the set $\mathrm{A}=\{1,2,3 \ldots . .12\}$ given by $\mathrm{R}=\{(\mathrm{a}, \mathrm{b})$: \|ab	is divisible by 3$\}$ is an equivalence relation. Find the set of all elements related to 1 .
43.	Show that the relation R defined on the set Z of integers given by $R=\{(a, b): 3$ divides $a-b\}$ is an equivalence relation.	
44.	Consider the relation R in the set of people in colony defined by aRb if a and b are members of joint family. Is R an equivalence relation?	
45.	Let R be a relation defined on the set N of natural numbers defined by nRm if n divides m . Write whether R is reflexive, symmetric and transitive.	

	INDIAN SCHOOL DARSAIT
Class XII	Mathematics Worksheet
	Worksheet \# I Equivalence Relation
(Chapter - 1: Relations \& Functions)	

46. Show that the relation R defined on the set A of all polygons defined by $R=\left\{\left(\mathrm{P}_{1}, \mathrm{P}_{2}\right): \mathrm{P}_{1}\right.$ and P_{2} have the same number of sides $\}$ is an equivalence relation. What is the set of all in A related to the right triangle T with sides 3,4 and 5 ?
47. Show that the relation R defined on the set A of all books in a college library defined by $R=\{(x, y)$: x and y have the same number of pages $\}$ is an equivalence relation.

57 Let Z be the set of integers and Z_{0} be the non-zero integers $=\{(a, b)(c, d): a d=b c\}$ be a relation on $Z \times Z_{0}$, show that R is the equivalence relation on $\mathrm{Z} \mathrm{X} Z_{0}$.
58 Verify $\mathrm{S}=\left\{(a, b): a^{2}+b^{2}=1\right\}$ is an equivalence relation on R or not.

59 Define $\mathrm{R}=\left\{(x, y): x, y \in Q, x=\frac{1}{y}\right\}$ check the given relation is equivalence relation or not.

